Sequence alignment kernel for recognition of promoter regions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence alignment kernel for recognition of promoter regions

UNLABELLED In this paper we propose a new method for recognition of prokaryotic promoter regions with startpoints of transcription. The method is based on Sequence Alignment Kernel, a function reflecting the quantitative measure of match between two sequences. This kernel function is further used in Dual SVM, which performs the recognition. Several recognition methods have been trained and test...

متن کامل

Transcription Factor Map Alignment of Promoter Regions

We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained ...

متن کامل

UBM-based sequence kernel for speaker recognition

This paper proposes a probabilistic sequence kernel based on the universal background model, which is widely used in speaker recognition. The Gaussian components are used to construct the speaker reference space, and the utterances with different length are mapped into the fixed size vectors after normalization with correlation matrix. Finally the linear support vector machine is used for speak...

متن کامل

Discriminative kernel-based phoneme sequence recognition

We describe a new method for phoneme sequence recognition given a speech utterance, which is not based on the HMM. In contrast to HMM-based approaches, our method uses a discriminative kernel-based training procedure in which the learning process is tailored to the goal of minimizing the Levenshtein distance between the predicted phoneme sequence and the correct sequence. The phoneme sequence p...

متن کامل

Forward-Decoding Kernel-Based Phone Sequence Recognition

Forward decoding kernel machines (FDKM) combine large-margin classifiers with hidden Markov models (HMM) for maximum a posteriori (MAP) adaptive sequence estimation. State transitions in the sequence are conditioned on observed data using a kernel-based probability model trained with a recursive scheme that deals effectively with noisy and partially labeled data. Training over very large datase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2003

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btg265